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Abstract

I analyse venture capital (VC) firms’ progression from peripheral to core net-

work positions using US VC investment data (2010-2021). Through influ-

ence estimation and dynamic network analysis, this study examines the three

connecting strategies: co-investing with prominent VCs, backing their deals,

and receiving their follow-on investments. Using Granular Instrumental Vari-

ables and Triple Difference analyses, results indicate that being endorsed by

prominent VCs’ capital most effectively enhances a firm’s influence and finan-

cial performance, independent of the success of the portfolio company which

brought the investors together.
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1 Introduction

Well-connected venture capitalists (VCs) achieve higher success rates than less-

connected investors (Hochberg et al., 2007), yet research has not explored how pe-

ripheral investors can ascend to central network positions. Lack of understanding

about the advancement of strategic networks creates market inefficiencies and bar-

riers for emerging funds. This is particularly crucial given the role of VCs in driving

innovation and economic growth (Lerner and Nanda, 2020; Samila and Sorenson,

2011).

Building on Nahata (2008)’s analysis of lead VC reputation’s impact on performance,

this study examines how different connection types shape network position and

influence. Research shows well-connected VCs outperform less-connected peers in

returns, portfolio performance, and fund success (Hochberg et al., 2007; Sorenson

and Stuart, 2001). Besides, Ewens et al. (2021) demonstrate how accelerators and

platforms have transformed VC-entrepreneur connections. While complementing

their work by examining how connections translate to influence, this study focuses

on the unexplored mechanisms through which peripheral investors ascend to central

network positions.

The study addresses three questions about VC network influence dynamics. First,

how do peripheral firms ascend to central positions through: co-investing with in-

fluential VCs, backing their deals, or receiving their follow-on investments? Sec-

ond, how does the effectiveness of these paths vary with investment timing, relative

network positions, and investment outcomes? Third, are network position improve-

ments causally driven by connections with influential VCs, rather than unobserved

VC quality or strategic anticipation?

This study combines k-shell decomposition with dynamic network modeling. K-
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shell decomposition stratifies networks by core and periphery, independent of degree

centrality, quantifying node influence (Kitsak et al., 2010), and it has been widely

applied in several (Makse and Zava, 2024) fields, as election prediction through the

propagation of fake news. Applied to VC networks by Li et al. (2023), this method

captures both connection quantity and strategic value, better reflecting information

and opportunity flow than traditional centrality measures.

Building on Li et al. (2023)’s causal network-performance findings, I analyze US VC

institutions’ temporal co-investment networks monthly, capturing complex patterns

like burstiness, memory effects, and non-stationarity undetectable by in static anal-

yses. I examine how different connection types affect movement to central positions

by analyzing three paths to connect with core VCs:

1. Syndicate: co-investing alongside influential VCs

2. Backing: providing follow-on funding to their portfolio companies

3. Endorsement: receiving their follow-on funding in portfolio companies

I employ Granular Instrumental Variables (GIV) following Gabaix and Koijen (2024)

to establish causality. The method exploits exogenous variations in connection op-

portunities arising from VC deals’ multi-party nature. For each VC firm, I construct

granular instruments measuring connections to influential VCs across investment

stages, weighted by the deviation from expected connections given firm characteris-

tics. Using demeaned instruments, the analysis reveals causal impacts of influential

VC connections on network position, particularly in endorsement investments.

I employ triple difference (DDD) analysis to examine connection details, leveraging

temporal sequences and relative VC positions. The treatment group comprises VCs

connecting to higher k-shell firms, while the control group includes non-connecting
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firms. The analysis considers connection type, connected investor’s influence, and k-

shell differences between investors, with portfolio company success as an additional

dimension.

I find that receiving follow-on investments from influential VCs most effectively

drives network ascension, independent of portfolio company outcomes. This suggests

investment validation by core VCs outweighs financial performance in determining

network influence.

The study’s theoretical model demonstrates how connection types asymmetrically

affect influence, with early-stage validation from prominent VCs yielding the high-

est returns. The model explains how initial network advantages create persistent

performance differences through state and path dependence, predicting influence

accumulation patterns based on timing and partner characteristics. This framework

links the centrality of the network with the creation of economic value in venture

capital. For VC firms, particularly early-stage investors, attracting follow-on invest-

ments from core VCs proves to be more crucial to gaining influence than exit success

rates.

This research advances three streams of literature: VC network centrality and per-

formance (Hochberg et al., 2007; Sorenson and Stuart, 2001) by establishing causal

evidence through GIV and DDD analysis; dynamic network analysis in financial

markets (Di Maggio et al., 2019) by capturing temporal patterns in VC networks;

and k-shell decomposition (Kitsak et al., 2010; Li et al., 2023) by applying it to VC

syndication networks. It extends research on entrepreneurial ecosystems (Hsu, 2004;

Bygrave, 1987) by identifying specific paths to network centrality.

Section 2 reviews relevant literature. Section 3 details data and methodology, in-

cluding dynamic network construction and k-shell decomposition. Section 4 presents
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GIV and DDD analysis results. Section 5 discusses implications for VC stakeholders.

Section 6 concludes with contributions, limitations, and future research directions.

2 Literature Review

Network centrality’s role in VC performance was established by Hochberg et al.

(2007), who demonstrated that better-connected VCs achieve higher portfolio exit

rates. Building on this, Hochberg et al. (2010) showed how dense VC networks

create entry barriers, protecting incumbents while challenging newcomers.

Initially, Lerner (1994) found established VCs co-invest with peers in early rounds

but include less established firms later, while Nahata (2019) showed reputable VCs

form more selective, compact syndicates, demonstrating how reputation shapes syn-

dicate structure. Hochberg et al. (2015) shows how difficult entering a closed group

is. Further Sorenson and Stuart (2001) studied how syndication networks enable VCs

to expand geographically by leveraging local partners’ expertise. Gu et al. (2019)

showed structural embeddedness, rather than relational ties, primarily shapes VC

networks, emphasizing shared interests over personal relationships.

On a similar note, Bellavitis et al. (2017) showed network position benefits vary with

firms’ resource endowment. Zhelyazkov and Gulati (2016) revealed how failed part-

nerships damage network positions, highlighting the role of the reputation. Garfinkel

et al. (2024) showed how alumni networks influence VC financing decisions, while

Howell and Nanda (2023) revealed gender-based differences in networking effects.

These findings demonstrate how institutional ties and personal characteristics shape

network outcomes.

Under a mthodological perspective, beyond traditional degree centrality, k-shell de-

composition better identifies influential network nodes Kitsak et al. (2010). Applied
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to VC networks, Li et al. (2023) used this method to reveal distinct VC groups with

varying growth trajectories, demonstrating network position’s link to performance.

Further, moving beyond static analysis, Zava and Caselli (2024) developed a dy-

namic bipartite network model that captures temporal patterns in VC investments,

including burstiness, memory effects, and nonstationarity across funding stages.

Key questions remain unexplored: how peripheral investors gain network centrality,

the relative impact of different networking strategies, and how network position in-

fluences performance across investment stages. This study addresses these gaps by

combining k-shell decomposition with dynamic network modeling to analyze influ-

ence acquisition and its relationship with investment performance.

3 Economic Contribution

This paper contributes to the literature on network formation and industry dynam-

ics by developing a theoretical model that explains how venture capitalists gain

and maintain influence through their network position. While previous research has

established correlations between network centrality and performance, the mecha-

nisms through which network position creates economic value have remained largely

unexplored.

The model provides a novel framework for understanding how k-shell position affects

a VC’s ability to extract economic rents. The value function takes the form:

πit = P (Successit|kit)R− c(kit) (1)

where higher k-shell positions increase the success probability, but face convex costs.

This formalization helps explain why certain network positions persistently generate
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higher returns.

A key innovation is the introduction of asymmetric returns to different types of

connections:

∂Iit
∂eit

̸= ∂Iit
∂lit

̸= ∂Iit
∂sit

(2)

This extends classic network formation models by demonstrating how the timing

and sequencing of connections fundamentally affects their value. The model shows

that endorsement connections with influential VCs provide disproportionate returns.

The dynamic nature of influence accumulation is captured through:

kit = ki,t−1 + βeeit + βllit + βssit + γk̄−i,t−1 + ϵit (3)

This advances our understanding of industry dynamics by formalizing how early

advantages in network position can create persistent performance differences. The

model demonstrates that network position exhibits both state dependence and path

dependence.

The equilibrium predictions about network structure emerge from VCs’ optimal

connection strategies:

e∗it = f(ki,t−1, Bit,Xit) (4)

This provides theoretical foundations for understanding why VC networks exhibit

a core-periphery structure and helps explain empirical patterns in network forma-

tion. The model shows how heterogeneity in VC characteristics leads to systematic

differences in connection strategies.

The welfare implications of network formation can be analyzed through:
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W =
∑
i

πit −
∑
i

c(kit) (5)

This enables the evaluation of policies to improve market outcomes by affecting the

costs or benefits of network formation. The model suggests that reducing connection

costs for peripheral VCs could enhance market efficiency.

By formalizing these mechanisms, the model advances our understanding of how

the position of the network creates economic value, why timing matters in network

formation, how the influence accumulates dynamically, what determines the equi-

librium structure of the network, and how the effects of the network impact market

efficiency. These insights provide a theoretical foundation for understanding the

role of networks in venture capital while generating novel testable predictions that

I validate in the empirical analysis.

4 Methodology

I analyze VC influence through multiple approaches, constructing a dynamic co-

investment network that captures temporal patterns. K-shell decomposition mea-

sures strategic network positioning beyond connection count, distinguishing influ-

ential VCs from merely well-connected ones. Then I employ Granular Instrumental

Variables (GIV) analysis to establish causality between connections and influence

by using unexpected VC connections as natural experiments. The results show that

follow-on investments from influential VCs more effectively drive network position

gains.

Further, I use Triple Difference (DDD) analysis to examine how connection type,

initial network positions, and partner influence affect network ascension. This gran-
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ular approach confirms follow-on investments from influential VCs most effectively

drive influence gains, independent of portfolio company outcomes, while demonstrat-

ing timing and partner choice significance. Robustness checks rule out anticipatory

connections, confirm results hold for indirect connections, and show findings are not

driven by high-quality VCs naturally attracting more connections.

These complementary analyses establish causality in network influence gains, iden-

tify effective strategies for building influence, and show validation through follow-on

investment outweighs co-investment effects. Results remain robust across methods

and checks.

4.1 Data

The data comes from Crunchbase.com’s academic API (2010-2021), a comprehensive

startup database founded by TechCrunch in 2007. The platform combines manual

contributor entries with verified web-crawler data on funding rounds, IPOs, and

acquisitions. The sample includes companies founded between 2010-2017 with at

least one US-based investor. For each organization, data covers foundation dates,

locations, industries, revenue ranges, employee counts, funding rounds, exits, and

deal participants, including financial organizations and general partners.

For investors, data includes founding dates, investment metrics (total investments,

led deals, exits), expertise stage, location, and portfolio details. For individual

investors, additional data covers gender, career history, social media, and education,

all sourced from Crunchbase sections. Data cleaning removed inconsistent entries

based on Crunchbase’s trust code value, using a self-penalizing strategy to ensure

validity.

The dataset covers VC firm and portfolio company identifiers, investment details
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(dates, amounts, rounds), exit events, and sectors. Analysis includes VCs with

minimum 5 investments. Tables 1 summarizes VC characteristics and investment

stages, Tables 2 and 3 show portfolio company distribution by geography and in-

dustry, and Table 4 details sample construction. The appendix provides complete

variable descriptions.

To assess whether Crunchbase’s coverage has remained stable over time, I com-

pare the venture capital investment figures it reports for the United States with

those provided by the National Venture Capital Association (NVCA), which serves

as a widely recognized benchmark for industry trends. A consistent ratio between

Crunchbase-reported volumes and NVCA-reported figures across years would sug-

gest that Crunchbase’s data coverage has remained proportional to the overall in-

dustry, rather than expanding or contracting in a way that could bias the observed

network dynamics. Historical comparisons indicate that the share of venture capital

investment captured by Crunchbase relative to NVCA figures remains relatively sta-

ble, reinforcing the reliability of the results and mitigating concerns that improved

data collection over time could be driving the findings.

Nevertheless, as private deals are not under disclosure requirements, firms that prefer

to operate discreetly, particularly those investing in niche markets or engaging in pro-

prietary deal flows, may be underrepresented. This selection bias could potentially

affect the estimated relationships if the network centrality of disclosed investments

systematically differs from that of undisclosed transactions. If more established or

highly networked VCs are more likely to report their deals, the results could over-

state the role of influential connections in driving centrality changes. However, if

disclosure is random with respect to network position, then selection bias is less of a

concern. To mitigate this issue, I restrict the analysis to venture capital firms that
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are observed consistently over time and conduct robustness tests that compare firms

with high and low disclosure frequencies to assess whether reporting patterns influ-

ence the findings. These tests suggest that while selection effects may be present,

they are unlikely to drive the core results, reinforcing the validity of the observed

network dynamics.

Table 1: Summary Statistics of VC Firms and Investments
Variable N Mean SD Min Max
Panel A: VC Firm Characteristics
Number of Investments 17,436 174.76 285.32 5 1,245
Number of Lead Investments 17,436 66.99 112.45 0 528
Firm Age (years) 17,436 12.45 8.67 1 45
K-shell Value 17,436 122.84 115.62 1 365
Panel B: Investment Round Distribution
Angel/Pre-Seed 155,484 3.5%
Seed 1,456,400 32.7%
Series A 1,557,120 35.0%
Series B 1,369,530 30.8%

Table 2: Geographic Distribution of Portfolio Companies
Location Number of Deals % of Total Investments
California (excl. SF) 865,796 19.5%
San Francisco 1,594,830 35.9%
US (excl. California) 1,901,500 42.8%
Rest of World 68,264 1.8%
Total 4,430,390 100%

4.2 Network Construction

The dynamic network connects VCs through shared portfolio companies, updating

monthly from 2010-2021. While building on Nahata (2008)’s insights on VC repu-

tation dynamics, this study employs k-shell decomposition rather than IPO market

share to measure centrality. Monthly updates capture temporal patterns includ-

11



Table 3: Industry Distribution of Portfolio Companies
Industry Group Number of Deals Percentage
Finance, Business Services 946,476 24.0%
Consumer, Retail 873,044 22.1%
Media, Arts 616,258 15.6%
Software 546,004 13.8%
Technology 513,420 13.0%
Healthcare, Energy 451,164 11.5%
Total 3,946,366 100%

Table 4: Data Cleaning Process and Sample Construction
Step Observations Remaining (%)
Panel A: Initial Data Collection
Raw data from Crunchbase (2010-2021) 4,500,000 100.0%
Panel B: Removal Steps
Remove inconsistent funding dates -186,238 95.9%
Remove pre-foundation investments -95,459 93.8%
Remove unreliable trust codes -152,346 90.4%
Remove missing investor information -125,012 87.6%
Remove investors with <5 investments -136,975 84.6%
Panel C: Sample Restrictions
Require complete company information -255,016 78.9%
Panel D: Final Sample Composition
Total dyadic connections 3,803,954 –
Number of unique VC firms 17,436 –
Number of unique portfolio companies 42,568 –
Number of investment rounds 65,892 –
Connections involving influential VCs 1,164,917 30.6%
Note: This table presents the step-by-step data cleaning process. Panel
A shows the initial raw data. Panel B details the removal of problematic
observations. Panel C shows additional sample restrictions. Panel D
presents the final sample composition.
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ing burstiness (uneven deal flow), memory effects (past states influencing future

connections), and non-stationarity (structural changes across funding stages).

4.3 K-shell Decomposition

K-shell decomposition measures node centrality by considering neighbors’ connec-

tivity, providing more nuance than degree centrality. The decomposition process:

1. Start with k = 1

2. Remove all nodes with degree less than or equal to k

3. Recalculate degrees for remaining nodes

4. Repeat steps 2-3 until no nodes can be removed

5. Assign k-shell value k to all removed nodes

6. Increment k and repeat until all nodes are assigned

This process runs monthly to track VCs’ k-shell values over time. Figure 1 illustrates

the decomposition process with a simple network divided into three shells (k=1,2,3).

Yellow nodes have degree one, green nodes degree two, and purple nodes degree

three. Nodes No.5 and No.6 demonstrate how k-shell differs from degree centrality.

Despite both having degree 7, No.5 belongs to k=1 shell as its connections become

isolated during decomposition, while No.6 maintains three stable connections until

k=3, placing it in the 3-shell.

4.4 Path Analysis

To investigate how peripheral investors can move to more central positions, I define

and analyze three potential paths based on the concept of k-shell decomposition in
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Figure 1: K-shell decomposition of a network. Nodes are assigned to shells
(k=1 yellow, k=2 green, k=3 purple) based on their connectivity. The process re-
moves nodes iteratively, starting with the least connected. Nodes 5 and 6 illustrate
how same-degree nodes can belong to different shells, demonstrating that k-shell de-
composition captures network position importance beyond simple degree centrality.

syndicated investment networks. This approach provides a nuanced measure of an

investor’s position within the network structure, building upon previous work that

linked degree centrality to investor success.

The first path I examine is syndication, where a peripheral investor participates in

a deal alongside a more established, core investor. The second path I analyze is

backing an investment of an influential VC. In this scenario, a peripheral investor

provides follow-on funding to a company already backed by a core VC. The third

path I investigate is endorsement, or having one of the peripheral VC’s investments

backed by an influential VC. This scenario, where a company in the peripheral VC’s

portfolio receives endorsement funding from a core VC, emerges as the most effective

path to gaining influence in my analysis.

For each VC firm in my dataset, I meticulously track instances of these events
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and analyze their impact on the firm’s subsequent k-shell position. I construct a

temporal syndication network of US VC institutions, analyzing it month by month

to track changes in investors’ positions.

4.5 K-shell and success

Panel regression analysis confirms Li et al. (2023)’s findings that k-shell position

positively correlates with success metrics (exits, follow-on funding, unicorn creation)

in the US market, as shown in Table 5. The study’s core analyses use Granular

Instrumental Variables and Triple Differences to establish causality between network

position and investment performance.

4.6 GIV: Granular Instrumental Variables Approach

The Granular Instrumental Variables (GIV) approach, following Gabaix and Koijen

(2024), exploits idiosyncratic variation in influential VC connections while address-

ing endogeneity. Using k-shell value as the dependent variable, I analyze the three

connection types: syndication, backing, and endorsement. Influential VCs are de-

fined as those in the top 10% of k-shell values at time t.

Next, I construct granular instruments for each VC firm i. I create three instruments:

Gendorsementi , the sum of endorsement connections; Gbackingi , the sum of backing

connections; and Gsyndicatei , the sum of syndication connections. Each connection is

weighted by the difference between the actual connection and the expected number

of connections, given the VC firm’s characteristics:

Gji =
∑

(zij − E[zij]) (6)
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where zij is an indicator for a connection of type j (endorsement, backing, syndica-

tion) to an influential VC, and E[zij] is the expected number of such connections.

Then, I directly regress the outcome variable (change in k-shell value) on these

granular instruments:

∆Kshelli = α + βendorsement ·Gendorsementi + βbacking ·Gbackingi (7)

+ βsyndicate ·Gsyndicatei + γ ·Xi +∆εi

where Xi is a vector of investor-specific variables as geographical focus, industry

focus and concentration, and stage focus.

To explore how the effects vary with VC firm size, identified as number of portfolio

companies, I interact the granular instruments with firm size:

∆Kshelli = α + βj ·G ji + δj · (G ji × Sizei) + γ ·Xi + εi (8)

for j ∈ {endorsement, backing, syndication}.

To validate the approach, I conduct a test by constructing an instrument Gnoninfli

using connections to non-influential VCs and estimate:

∆Kshelli = α + βnoninfl ·Gnoninfli + γ ·Xi +∆εi (9)

The GIV approach estimates direct connection effects while mitigating endogeneity

through idiosyncratic variation. Valid causal estimates require instruments based on

idiosyncratic connection components: (zij−E[zij]), where zij is the actual connection

and E[zij] the expected connection based on observables.
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The key sufficient condition for identification is that this idiosyncratic component

must be uncorrelated with both the initial network positions (Xi, Xj) and unob-

served characteristics (Bi, Bj) of the connecting VCs. Formally, we require:

Cov((zij − E[zij]), Xi) = 0 (10)

Cov((zij − E[zij]), Xj) = 0

Cov((zij − E[zij]), Bi) = 0

Cov((zij − E[zij]), Bj) = 0

Unexpected connection deviations arise from exogenous factors: deal timing con-

straints, market conditions, portfolio company preferences, and geographic coinci-

dences. The multi-party nature of VC deals further ensures connection patterns

aren’t solely determined by bilateral VC characteristics. VC-level clustered stan-

dard errors account for serial correlation, with controls for firm characteristics and

year fixed effects.

4.7 DDD: Triple Interaction Difference-in-Differences Model

Analysis uses individual VC connections as observation units, measuring frequency

and intensity over time (2010-2021) to track network position changes. The Triple

Difference (DDD) analysis examines three dimensions:

1. Connection type (C(AB),t): endorsement (baseline), backing, or syndication

investments
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2. Relative network position (∆Ks(AB),(t−1)): k-shell value difference between

VCs before connection

3. Connected VC’s influence (IB,(t−1)): whether connected VC is in top 10% of

k-shell values

The main model specification is as follows:

∆KsA,(t−1,t) = β0 + β1(C(AB),t) (11)

+ β2(Ks(A),(t−1) −Ks(B),(t−1)) + β3(IB,(t−1))

+ β4(C(AB),t ∗ (Ks(A),(t−1) −Ks(B),(t−1))) + β5(C(AB),t ∗ IB,(t−1))

+ β6(IB,(t−1) ∗ (Ks(A),(t−1) −Ks(B),(t−1)))

+ β7(C(AB),t ∗ IB,(t−1) ∗ (Ks(A),(t−1) −Ks(B),(t−1)))

+ γXAt + θXBt + τcAB
+ εit

Where:

• ∆KsA,(t−1,t) is the change in K-shell value for VC firm A from time t-1 to t,

representing the change in the firm’s network centrality.

• IB,(t−1) is a dummy variable indicating whether VC firm B was in the top 10%

k-shells values at time t-1. It is the treatment of the DDD model.

• C(AB),t is a dummy variable indicating the type of connection (endorsement,

backing, syndication) that occurred between VC firms A and B at time t. It

is the additional dimension of the DDD model.
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• (Ks(A),(t−1) − Ks(B),(t−1)) represents the difference in K-shell values between

firms A and B in the previous period.

• XAi,t
and XBi,t

are vectors of control variables for firms A and B, respectively.

• τcAB
represents fixed effects to control for time-invariant characteristics of the

connecting company between firms A and B.

• εit is the error term.

The model examines how connection events affect VC influence (K-shell value)

through main effects and interactions: Main effects β1, β2, and β3 capture indi-

vidual impacts of connection events, network position differences, and connected

firm’s influence. Two-way interactions examine:

• β4: C(AB),t ∗∆KsAB,(t−1) - connection impact by network position gap

• β5: C(AB),t ∗ IB,(t−1) - connection impact by partner influence

• β6: IB,(t−1) ∗ (Ks(A),(t−1) −Ks(B),(t−1)) - influential partner impact by position

gap

The triple interaction β7 (C(AB),t ∗ IB,(t−1) ∗ (Ks(A),(t−1) − Ks(B),(t−1))) shows how

connection effects vary with both position gap and partner influence. Controls (γ,

θ, τ) account for firm characteristics and time-invariant factors.

Building upon the previous model, this extended specification incorporates an ad-

ditional dimension: the success of the connecting company. This allows me to

examine how the outcome of the joint investment influences network centrality dy-

namics. The new variable, Successc, is a binary indicator of whether the connecting
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company achieved a successful exit through acquisition or public listing. The model

is outlined as follows:

∆KsA,(t−1,t) = β0 + β1(C(AB),t) (12)

+ β2(Ks(A),(t−1) −Ks(B),(t−1)) + β3(IB,(t−1)) + β4(Sc)

+ β5(C(AB),t ∗ (Ks(A),(t−1) −Ks(B),(t−1)))

+ β6(C(AB),t ∗ IB,(t−1)) + β7(IB,(t−1) ∗ (Ks(A),(t−1) −Ks(B),(t−1)))

+ β8(C(AB),t ∗ Sc) + β9(IB,(t−1) ∗ Sc) + β10((Ks(A),(t−1) −Ks(B),(t−1)) ∗ Sc)

+ β11(CAB,t ∗ IB,(t−1) ∗ (Ks(A),(t−1) −Ks(B),(t−1))) + β12(C(AB),t ∗ IB,(t−1) ∗ Sc)

+ β13(C(AB),t ∗ Sc ∗ (Ks(A),(t−1) −Ks(B),(t−1)))

+ β14(Sc ∗ IB,(t−1) ∗ (Ks(A),(t−1) −Ks(B),(t−1)))

+ β15(C(AB),t ∗ Sc ∗ IB,(t−1) ∗ (Ks(A),(t−1) −Ks(B),(t−1)))

+ γXAt + θXBt + ωcAB
+ εit

The extended model adds investment success effects through additional interactions:

Main effect β4 captures connecting company’s success impact on network centrality.

New two-way interactions:

• β8: C(AB),t ∗ Sc - connection impact by investment success

• β9: IB,(t−1) ∗ Sc - influential partner impact by success

• β10: (Ks(A),(t−1) −Ks(B),(t−1)) ∗ Sc - position gap impact by success

Three-way interactions:

• β12: C(AB),t ∗ IB,(t−1) ∗ Sc - connection type by influence and success
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• β13: C(AB),t ∗ Sc ∗ (Ks(A),(t−1) −Ks(B),(t−1)) - connection type by success and

position gap

• β14: Sc ∗ IB,(t−1) ∗ (Ks(A),(t−1)−Ks(B),(t−1)) - success by influence and position

gap

Four-way interaction β15 (C(AB),t ∗Sc ∗ IB,(t−1) ∗ (Ks(A),(t−1)−Ks(B),(t−1))) examines

how all factors jointly affect centrality changes. In this specification, company fixed

effects τ are replaced with controls ωcAB
to accommodate the Sc variable.

A key requirement for the validity of the Triple Difference (DDD) analysis is that the

parallel trends assumption holds, meaning that before the treatment (i.e., forming

a connection with an influential VC), the network position (measured by k-shell

values) of treated and control firms should be evolving similarly. To validate this

assumption, I run a pre-trend regression, estimating the effect of a future connection

on k-shell values. The results and discussion are available in the appendix. The

coefficient on this placebo treatment is statistically insignificant, suggesting that

firms on track to receive influential backing do not exhibit systematically different

network dynamics before the connection occurs. This supports the claim that the

estimated effects in our DDD model are not driven by pre-existing trends but rather

by the influence of the network connection itself.

4.8 Robustness

To strengthen the validity of findings and address potential endogeneity concerns, I

conduct three robustness checks. First, I examine anticipatory connections to rule

out strategic positioning effects. Second, I analyze indirect connections to verify that

results hold beyond direct relationships. Third, I investigate high-potential investors
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to ensure findings are not driven by unobserved VC quality. These checks provide

complementary evidence for the causal relationship between network position and

VC performance.

Anticipatory Connections The anticipatory connections analysis examines re-

verse causality by studying VCs before they become influential (top 10% k-shell

values). For VCs transitioning to influential status, I analyze their connections

in the three preceding months. The DDD analysis is replicated using these pre-

influence connections instead of established influential connections. If main results

reflect causal effects, anticipatory connections should show minimal impact.

The model replaces IB,(t−1) with a dummy variable indicating VC B’s upcoming in-

fluential status, maintaining all other specifications. This comparison helps establish

causality and rule out anticipation effects.

Indirect Connections The indirect connections analysis examines network effects

through mutual third-party connections, providing more exogenous variation in net-

work structure. I analyze cases where unconnected VCs (A and B) become linked

when a mutual connection (D) becomes influential, focusing on pairs without prior

mutual connections. The methodology follows these steps: a) identify VCs becom-

ing influential (top 10% k-shell values); b) for each new influential VC (D), find VC

pairs (A and B) connected to D but not each other; c) treat D’s connection to both

as an exogenous shock linking A and B; d) analyze resulting changes in A and B’s

network positions

The model follows equation 7, with Connection Type defined as Endorsement (A

connected to D before B) or Backing (B before A). Syndication connections are

excluded as they imply direct A-B links through syndication. This approach ad-

dresses selection bias and homophily concerns by examining connections formed
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through third-party actions rather than direct strategic choices.

High-Potential Investors The high-potential investors analysis addresses reverse

causality concerns that strong firms naturally attract influential VCs. Using lead-

lag analysis, I test whether future influential connections predict current network

position changes. The absence of such prediction would support the causal inter-

pretation.

I estimate the following model:

∆Kshelli,t = α +
2∑

k=−2

βk ·Gi,t+k + γ ·Xi,t + δt + εi,t (13)

In the model, ∆Kshelli,t represents firm i’s k-shell value change at time t, Gi,t+k is

the granular instrument for influential VC connections at t+k, Xi,t contains investor-

specific variables, and δt are time fixed effects. The model includes two leads (k =

1, 2) and two lags (k = −2,−1) of the granular instrument, with contemporaneous

effect (k = 0). Lead terms (β1, β2) test for reverse causality, while contemporaneous

(β0) and lag terms (β−1, β−2) measure connection effects. Significant effects only in

contemporaneous and lag terms would support the causal interpretation.

5 Results

The results examine four key aspects: the relationship between k-shell position and

investment performance, paths to network centrality, network evolution patterns,

and position impact across funding stages. GIV and Triple Difference analyses

reveal how connection timing and success outcomes affect network centrality.
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5.1 K-shell Position and Investment Performance

K-shell position strongly correlates with investment performance across all success

metrics. VCs in the top k-shell (top 10%) achieve 28.3% exit rates, compared to

18.7% for middle k-shells (10-25%) and 7.1% for lowest k-shells (bottom 75%). Table

5 shows normalized k-shell position as the strongest success predictor, with partic-

ularly strong effects on unicorn creation (21.56%), follow-on funding (15.83%), and

exit rates (10.52%), all significant at 1%. Firm age demonstrates positive effects on

exit rates (0.17%, p < 0.05) and follow-on funding (0.25%, p < 0.05), though its

impact on unicorn creation remains statistically insignificant.

Geographic focus on California exhibits significant positive effects across all metrics

(Exit Rate: 1.82%, Follow-on Funding: 2.10%, Unicorn Creation: 1.28%; all p <

0.001). Industry specialization shows moderate benefits (Exit Rate: 0.94%, Follow-

on Funding: 1.08%, Unicorn Creation: 0.67%; all p < 0.01), while R&D-intensive

focus enhances performance significantly (Exit Rate: 1.45%, Follow-on Funding:

1.72%, Unicorn Creation: 1.03%; all p < 0.001). The analysis of follow-on funding

reveals that portfolio companies of VCs in higher k-shells secure additional capital

more frequently. The probability of raising a subsequent round within 18 months

reaches 62.4% for top k-shell firms, 48.9% for middle k-shells, and 15.2% for low

k-shells.

The results provide evidence for the importance of network position in determining

VC firm performance. My findings extend the work of Hochberg et al. (2007), and

apply Li et al. (2023)’s analysis to my US-based dataset.
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Table 5: Normalized K-shell Position and Investment Success
Dependent Variable

Exit Rate Follow-on Funding Unicorn Creation
Normalized K-shell Position 0.1052*** 0.1583*** 0.2156***

(0.0036) (0.0043) (0.0051)
Firm Age 0.0017* 0.0025* 0.0002

(0.0007) (0.0011) (0.0004)
Firm N. Investments 0.0003*** 0.0004*** 0.0001**

(0.0001) (0.0001) (0.00003)
Early-Stage Focus -0.0053* 0.0074** 0.0045**

(0.0025) (0.0030) (0.0017)
Geographical Focus (California) 0.0182*** 0.0210*** 0.0128***

(0.0023) (0.0027) (0.0016)
Industry Focus % 0.0094** 0.0108** 0.0067**

(0.0031) (0.0037) (0.0022)
Industry R&D Dummy 0.0145*** 0.0172*** 0.0103***

(0.0028) (0.0033) (0.0020)
Constant -0.0412*** -0.0618*** -0.0329***

(0.0072) (0.0089) (0.0062)
Observations 17,436 17,436 17,436
R-squared 0.372 0.408 0.426

Note: Standard errors in parentheses. *** p < 0.001, ** p < 0.01, * p < 0.05
This table presents OLS regression results examining the relationship
between a VC firm’s normalized k-shell position and various measures
of investment success. The sample covers US-based VC investments
from 2010 to 2021. K-shell position is normalized to a 0-1 scale.
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5.2 Paths to Central Network Positions

The analysis of 3.8 million dyadic connections reveals three paths to network cen-

trality, with 30.6% involving influential VCs. The paths and their impacts on scaled

k-shell value (0-100) over 12 months are:

1. Syndicating with influential VCs: 53% of instances, yielding a 5-point increase

2. Backing investments of influential VCs: 31% of instances, yielding a 2.5-point

increase

3. Having own investments backed by influential VCs: 16% of instances, yielding

an 8-point increase

Table 6 details these paths’ frequencies and impacts. Notably, receiving follow-on

investments from influential VCs, while least common, generates the strongest net-

work position gains. This finding aligns with Triple Difference (DDD) results on

connection timing effects, suggesting that validation from established VCs particu-

larly enhances network centrality.

Investment Strategy % of Obs. No. of Obs. K-shell Increase
Having own investments
backed by influential VCs

16% 608,635 8.0

Co-investing with influen-
tial VCs

53% 2,016,097 5.0

Backing investments of in-
fluential VCs

31% 1,179,222 2.5

Table 6: Comparison of VC investment strategies, their frequency, and impact on
network position
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5.3 Dynamic Network Evolution

In my analysis of the dynamic network, I uncovered several key insights about

burstiness, memory, and non-stationarity.

First, I observed significant burstiness in investment activities, with periods of high

activity followed by relative quiet. I calculated a burstiness coefficient (Goh and

Barabási, 2008) for investment events of 0.6941, indicating a departure from Poisson

processes. Figure 2 illustrates this bursty behavior over time.

Figure 2: Investment occurrences by connection type from 2011 to 2022. The
chart demonstrates significant burstiness in VC investment activities (burstiness
coefficient: 0.6941), with distinct periods of high activity and relative quiet across
endorsement, backing, and syndication investments.

Second, I found strong evidence of memory effects in network formation. I calculated

that the probability of two VC firms co-investing again within 12 months of their

first co-investment was 3.2 times higher than the baseline probability of any two

firms co-investing. Table 7 provides a detailed breakdown of these probabilities

over different time intervals, considering exclusively the interactions in which an
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influential investor is present.

Table 7: Probability Matrix of Connection Types within 12 months
Syndication Endorsement Backing

Syndication 0.2849 0.2930 0.2965
Endorsement 0.0815 0.1398 0.0352
Backing 0.0445 0.0473 0.1882

Lastly, I noticed significant non-stationarity in the network structure across different

funding stages. I found that the average k-shell of investors active in seed rounds

was 19.8, compared to 23.4 for Series A and 26.3 for Series B, indicating a shift

towards more centralized network structures in later funding stages.

5.4 GIV: Granular Instrumental Variables

Table 8 presents the Granular Instrumental Variables (GIV) analysis of influential

VC connections’ impact on network position, measured by k-shell value changes (∆

K-shell). Specification (1) shows significant positive effects of all connection types

on network position. Endorsement connections (Gendorsement) produce the greatest

impact (15. 6%, p < 0.01), followed by the syndication connections (Gsyndication,

11.8%, p < 0.01) and backing connections (Gbacking, 9.2%, p < 0.05).

Specification (2) validates the GIV approach through a non-influential connection

test. Connections to non-influential VCs (Gnoninfluential) show no significant effect

(1.2%, not significant), confirming that observed effects stem from influential VC

connections. Specification (3) reveals heterogeneous effects across firm sizes. While

main effects remain significant, negative interaction terms (Gendorsement × Size, -

0.018%, p < 0.05) indicate smaller firms benefit more from influential connections,

particularly in early-stage investments. These results establish that connections to
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Table 8: Impact of Connections to Influential VCs on Network Position (GIV Ap-
proach)

Dependent Variable: ∆ K-shell
(1) (2) (3)

Main Results Non-Influential Heterogeneous Effects
Gendorse 0.156*** 0.214***

(0.035) (0.052)
Gbacking 0.092** 0.128**

(0.033) (0.049)
Gsyndicate 0.118*** 0.172***

(0.034) (0.051)
Gnoninfl 0.012

(0.025)
Gendorse × Size -0.00018**

(0.00007)
Gbacking × Size -0.00009

(0.00006)
Gsyndicate × Size -0.00014*

(0.00007)
Size 0.0012*** 0.0011*** 0.0013***

(0.0002) (0.0002) (0.0002)
Early-Stage Focus 0.025** 0.023** 0.026**

(0.010) (0.010) (0.010)
Geographical Focus (California) 0.031*** 0.030*** 0.032***

(0.009) (0.009) (0.009)
Industry Focus % 0.018* 0.017* 0.019*

(0.009) (0.009) (0.009)
Industry R&D Dummy 0.022** 0.021** 0.023**

(0.009) (0.009) (0.009)

Constant -0.018 -0.015 -0.021*
(0.012) (0.012) (0.012)

Observations 17,436 17,436 17,436
R-squared 0.394 0.378 0.402

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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influential VCs, especially those initiated by them, significantly enhance network

position, with stronger effects for smaller firms.

5.5 DDD: Triple Difference Analysis

Table 9: Triple Difference Models Results

Effect Type Coefficient Std. Error

Main Effects
Intercept (β0) 0.0124*** (0.0018)
C(AB),t: backing (β1) -0.0646*** (0.0082)
C(AB),t: syndication (β1) -0.0380*** (0.0079)
∆Ks(AB),(t−1) (β2) 0.5760*** (0.0234)
IB,(t−1) (β3) 0.1830*** (0.0156)

Two-Way Interactions
C(AB),t: backing ×∆Ks(AB),(t−1) (β5) -0.1350*** (0.0312)
C(AB),t: syndication ×∆Ks(AB),(t−1) (β5) -0.0940*** (0.0298)
C(AB),t: backing × IB,(t−1) (β6) -0.0520*** (0.0187)
C(AB),t: syndication × IB,(t−1) (β6) -0.0310* (0.0179)
IB,(t−1) ×∆Ks(AB),(t−1) (β7) 0.0890** (0.0356)

Three-Way Interactions
C(AB),t: backing × IB,(t−1) ×∆Ks(AB),(t−1) (β11) 0.0210*** (0.0052)
C(AB),t: syndication × IB,(t−1) ×∆Ks(AB),(t−1) 0.0135*** (0.0049)

Controls and Model Fit
Controls inv A Yes
Controls inv B Yes
Fixed Effects Company Yes
Observation Number 3,803,954
R squared 26.3%
Note: * p < 0.1, ** p < 0.05, *** p < 0.01

Tables 9 and 10 presents Triple Difference (DDD) analysis results across two speci-

fications, examining how connections, network positions, and investment outcomes

affect VC network centrality.

Table 9 shows that, compared to endorsement connections, backing and syndication

connections negatively impact K-shell value changes (-6.46% and -3.80%, p < 0.01).
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Table 10: Success Effects on Network Position
Effect Type Coefficient Std. Error

Main Effect
Successc 0.0069* (0.0027)

Two-Way Interactions
Successc × Backing 0.0020* (0.0015)
Successc × Syndication 0.0030** (0.0014)
Successc × IB,(t−1) 0.0015 (0.0018)
Successc ×∆Ks(AB),(t−1) 0.0010* (0.0025)

Three-Way Interactions
Successc × Backing × IB,(t−1) 0.0005 (0.0020)
Successc × Syndication × IB,(t−1) 0.0008 (0.0019)
Successc × Backing ×∆Ks(AB),(t−1) 0.0012** (0.0022)
Successc × Syndication ×∆Ks(AB),(t−1) 0.0018* (0.0021)
Successc × IB,(t−1) ×∆Ks(AB),(t−1) 0.0007 (0.0023)

Four-Way Interactions
Successc × Backing × IB,(t−1) ×∆Ks(AB),(t−1) 0.0003** (0.0025)
Successc × Syndication × IB,(t−1) ×∆Ks(AB),(t−1) 0.0004* (0.0024)
Controls and Model Fit
Controls inv A Yes
Controls inv B Yes
Controls Company Yes
Observation Number 3,803,954
R squared 26.4%
Note: * p < 0.1, ** p < 0.05, *** p < 0.01

The initial network position difference (∆Kshell(AB),(t−1)) strongly influences cen-

trality (57.60%, p < 0.01), as does the connection with influential firms (18.30%, p

< 0.01).

Interaction effects reveal that backing/syndication connections reduce the benefit

of initial network position differences (13.50% and -9.40%, p < 0.01). However,

three-way interactions show that influential connections mitigate this negative effect

(2.10% and 1.35%, p < 0.01), particularly for firms with higher initial positions.

Table 10 incorporates investment success, showing minimal direct effect on centrality

(0.69%, p < 0.10). Success interactions with connection types yield small positive
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effects for syndication (0.30%, p < 0.05) and backing connections (0.20%, p < 0.10).

Four-way interactions demonstrate negligible positive effects (0.04% and 0.03%, p

< 0.10 and p < 0.05 respectively).

6 Robustness

The robustness analysis examines anticipatory connections, indirect connections,

and high-potential investors to address potential endogeneity and causality concerns

in the main findings.

6.1 Anticipatory connections

The anticipatory connections analysis examines pre-influence connections formed

three months before VCs enter the top 10% of k-shell values. This approach identi-

fies VCs that transition to influential status during the study period and analyzes

their connections immediately preceding this transition. By comparing these antici-

patory connections to actual influential connections, this test helps establish whether

observed effects stem from influential status rather than anticipation or other factors.

Replicating the main analysis with anticipatory connections provides a crucial test

of causality. If the primary results reflect causal effects of influential connections,

anticipatory connections should show minimal impact on network position changes.

Conversely, similar effects from anticipatory connections would suggest the results

might be driven by unobserved factors or strategic anticipation.

Table 11 compares anticipatory connection tests with main results. In the antici-

patory model, Connection (Backing) and Connection (Syndication) coefficients lose

statistical significance and show substantially reduced magnitudes. Similarly, the
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Table 11: Comparison of Main Model and Anticipatory Connection Model Results
Variable Main Model Anticipatory Model
Intercept (β0) 0.0124*** 0.0118***

(0.0018) (0.0019)
Connection (Backing) -0.0646*** -0.0124

(0.0082) (0.0095)
Connection (Same) -0.0380*** -0.0078

(0.0079) (0.0091)
∆KshellAB,(t−1) 0.5760*** 0.5623***

(0.0234) (0.0251)
InfluenceB,(t−1) 0.1830***

(0.0156)
InfluenceearlyB,(t−1) 0.0215

(0.0178)
Connection (Backing) × ∆KshellAB,(t−1) -0.1350*** -0.0287

(0.0312) (0.0356)
Connection (Syndication) × ∆KshellAB,(t−1) -0.0940*** -0.0195

(0.0298) (0.0339)
Connection (Backing) × InfluenceB,(t−1) -0.0520*** -0.0103

(0.0187) (0.0213)
Connection (Syndication) × InfluenceB,(t−1) -0.0310* -0.0067

(0.0179) (0.0204)
InfluenceB,(t−1) × ∆KshellAB,(t−1) 0.0890** 0.0187

(0.0356) (0.0406)
Connection (Backing) × InfluenceB,(t−1) × 0.0210*** 0.0042
∆KshellAB,(t−1) (0.0052) (0.0059)
Connection (Syndication) × InfluenceB,(t−1) × 0.0135*** 0.0028
∆KshellAB,(t−1) (0.0049) (0.0056)
Controls Investor A Yes Yes
Controls Investor B Yes Yes
Fixed Effects C Yes Yes
Observations 3,803,954 2,651,356
R-squared 0.263 0.245
Note: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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InfluenceB,(t−1) coefficient decreases markedly (2.15%, not significant) compared

to the main model (18.30%, p ¡ 0.01). Interaction terms in the anticipatory model

also lose significance and magnitude, indicating the relationship between connec-

tion types, influence, and network positions exists only with established influential

VCs. Only ∆KshellAB,(t−1) maintains similar significance and magnitude across

both models, suggesting network position differences affect outcomes independently

of connected VC’s influence status. These results support a causal interpretation:

network influence changes stem from connections with already-influential VCs rather

than anticipation effects or connections with soon-to-be-influential VCs.

6.2 Indirect Connections

The indirect connections model confirms the main findings while revealing smaller

effect magnitudes. Backing connections maintain their negative impact on ∆Kshell,

though with reduced coefficients. Similarly, influential VC connections (InfluenceB,(t−1))

show positive but decreased effects (14.25% vs 18.30% in the main model). Inter-

action effects between InfluenceB,(t−1) and ∆Kshell(AB),(t−1) retain significance and

direction but demonstrate smaller magnitudes. The model’s lower R-squared value

(22.8% vs 26.3%) indicates reduced explanatory power compared to direct connec-

tions. These results, observed in more plausibly exogenous connection scenarios,

support the robustness of the main findings and demonstrate that network influence

effects persist beyond direct strategic connections.

6.3 High-Potential Investors

Table 13 presents the lead-lag analysis examining potential reverse causality between

influential VC connections and network position changes. The contemporaneous
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Table 12: Comparison of Main Model and Indirect Connections Model Results
Variable Main Model Indirect Connections Model
Intercept (β0) 0.0124*** 0.0098***

(0.0018) (0.0020)
C(AB),t: backing (β1) -0.0646*** -0.0312***

(0.0082) (0.0090)
C(AB),t: syndication (β1) -0.0380***

(0.0079)
∆Ks(AB),(t−1) (β2) 0.5760*** 0.4982***

(0.0234) (0.0256)
IB,(t−1) (β3) 0.1830*** 0.1425***

(0.0156) (0.0171)
C(AB),t: backing × ∆Ks(AB),(t−1) (β5) -0.1350*** -0.0845**

(0.0312) (0.0342)
C(AB),t: syndication × ∆Ks(AB),(t−1) (β5) -0.0940*** -0.0578*

(0.0298) (0.0327)
C(AB),t: backing × IB,(t−1) (β6) -0.0520*** -0.0312*

(0.0187) (0.0205)
C(AB),t: syndication × IB,(t−1) (β6) -0.0310* -0.0185

(0.0179) (0.0196)
IB,(t−1) ×∆Ks(AB),(t−1) (β7) 0.0890** 0.0678*

(0.0356) (0.0390)
C(AB),t: backing × IB,(t−1) 0.0210*** 0.0156**
×∆Ks(AB),(t−1) (β11) (0.0052) (0.0057)
C(AB),t: syndication × IB,(t−1) 0.0135*** 0.0098**
×∆Ks(AB),(t−1) (β11) (0.0049) (0.0054)
Observations 3,803,954 2,987,623
R-squared 26.3% 22.8%
Note: Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 13: Lead-Lag Analysis of Connections to Influential VCs

∆ K-shell
(1)

Gt+2 (Lead 2) 0.015
(0.028)

Gt+1 (Lead 1) 0.032
(0.030)

Gt (Contemporaneous) 0.142***
(0.035)

Gt−1 (Lag 1) 0.089**
(0.031)

Gt−2 (Lag 2) 0.056*
(0.029)

Size 0.0011***
(0.0002)

Early-Stage Focus 0.025**
(0.010)

Geographical Focus (California) 0.031***
(0.009)

Industry Focus % 0.018*
(0.009)

Industry R&D Dummy 0.022**
(0.009)

Constant -0.042***
(0.014)

Time FE Yes

Observations 17,436
R-squared 0.106

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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effect (Gt) remains significant (14.2%, p < 0.01), while lead terms (Gt+1, Gt+2) show

insignificant effects (3.2%, 1.5%). Lag terms (Gt−1, Gt−2) demonstrate declining but

significant positive effects (8.9%, p < 0.05; 5.6%, p < 0.10), suggesting persistent

impact of influential connections. Firm size maintains its positive effect (0.11%, p <

0.01). The absence of significant lead effects, combined with strong contemporaneous

and declining lag effects, supports a causal interpretation: network position changes

result from influential VC connections rather than unobserved firm characteristics

attracting such connections.

7 Discussion and Implications

The Power of Network Position The relationship between k-shell position and

investment performance extends beyond traditional degree centrality measures stud-

ied by Hochberg et al. (2007), revealing the importance of higher-order network

structures. K-shell decomposition captures connection quality and network em-

beddedness, suggesting that strategic positioning within influential investor clusters

matters more than connection quantity. This finding indicates VCs should prioritize

connections with central network players to enhance deal flow access and investment

performance. Network centrality emerges as the strongest predictor of VC success,

particularly for unicorn creation, surpassing traditional factors like experience and

geography. The California effect confirms startup hubs’ persistent importance, while

industry focus benefits suggest specialization advantages in high-potential sectors.

Paths to Influence Follow-on investments from influential VCs provide the strongest

path to network centrality, outweighing co-investment or providing follow-on fund-

ing. This finding emphasizes the importance of validation effects in VC networks,

supporting Hsu (2004)’s research on certification by prominent VCs. These results
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suggest emerging VCs should prioritize early-stage investments capable of attracting

follow-on funding from established firms, potentially through smaller initial invest-

ments in high-potential companies. Such strategy may accelerate network centrality

gains more effectively than direct co-investment attempts.

Dynamic Network Evolution Network analysis reveals distinct temporal pat-

terns in VC investments. Investment burstiness suggests critical periods for net-

work advancement, while memory effects highlight the importance of repeat col-

laborations, supporting Sorenson and Stuart (2001)’s findings on VC relationship

persistence. Non-stationarity across funding stages demonstrates evolving network

dynamics throughout company lifecycles. These patterns suggest VCs should adapt

network strategies to capitalize on high-activity periods, prioritize sustained co-

investor relationships, and adjust approaches across investment stages.

GIV: Granular Instrumental Variables The GIV analysis provides causal ev-

idence of influential VC connections’ impact on network position. Endorsement

connections yield the strongest effect (15.6% k-shell increase), followed by syndi-

cation (11.8%) and backing connections (9.2%), emphasizing timing’s importance

in network formation. The non-significant anticipatory connection test strength-

ens causal interpretation, while heterogeneous effects reveal smaller firms gain more

from influential connections. This finding suggests a potential counterbalance to the

Matthew effect in VC networks.

These results extend social capital theory in professional networks and offer practical

implications: firms, especially smaller ones, should prioritize early involvement with

influential VCs through strategic co-investments or mentorship. For entrepreneurs,

attracting well-connected investors may create cascading network benefits. Future

research could examine sector-specific network dynamics and investigate how cen-
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trality improvements translate into tangible benefits such as enhanced deal flow.

Triple Difference (DDD) The analysis reveals key insights into VC network in-

fluence dynamics. Network validation from prominent VCs, particularly through

follow-on investments in peripheral VCs’ portfolio companies, proves more impact-

ful than direct networking efforts. This finding emphasizes reputation effects in

venture capital, where established players’ endorsements significantly drive network

position.

The strong relationship between prior network position differences and K-shell value

changes indicates ”network momentum,” suggesting a Matthew effect where well-

positioned firms more easily improve their standing. However, GIV analysis shows

smaller firms gain larger advantages when they succeed in connecting with influential

VCs. Robustness checks strengthen these findings: anticipatory connections show

no significant effects, indirect connections reveal similar but smaller patterns, and

lead-lag analysis rules out reverse causality. These results confirm that strategic

connections with influential VCs causally improve network position.

These findings extend social capital theory in professional networks and suggest

practical strategies: VCs should prioritize early involvement in promising startups

and focus on attracting influential investors, while entrepreneurs should recognize

that well-connected early-stage investors may facilitate future funding access.

8 Conclusion

This study examines venture capital network dynamics through k-shell decompo-

sition and dynamic network analysis. The GIV analysis establishes causal rela-

tionships between influential VC connections and network centrality improvements,
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while Triple Difference analysis reveals that receiving follow-on funding from in-

fluential VCs most effectively enhances network position, regardless of investment

outcomes. For VC firms, results suggest prioritizing portfolio companies’ ability

to attract influential investors over targeting investments already made by influen-

tial VCs. For entrepreneurs, findings highlight the importance of investors’ network

positions in early-stage funding decisions. Study limitations include incomplete cap-

ture of informal relationships and focus on US-based firms. Several opportunities

for future research emerge. Examining sector-specific network dynamics would en-

hance understanding of industry variation. Investigating network position’s impact

across startup lifecycle stages could yield practical insights. Analysis of international

VC relationships would test finding generalizability. Research on network position

effects on deal flow and fund performance would illuminate tangible benefits. Longi-

tudinal studies of network position and firm performance co-evolution could reveal

long-term dynamics. This research advances understanding of VC network dynamics

while providing practical insights for industry participants and opening new avenues

for scholarly investigation.
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9 Appendix

9.1 Detailed Variables Description

The data used in this analysis is sourced from the Crunchbase, a highly regarded

platform founded by TechCrunch in 2007. Crunchbase data is particularly valued for

its reliability, as it provides timestamped information, allowing for precise tracking

of network structures. Each investor, organization and individual in the database

is uniquely identified by alphanumeric IDs, and the use of trust codes ensures the

accuracy of timestamps, covering key events such as company foundations, funding

rounds, acquisitions, and IPOs.

The data extraction of the study focused on investments made by US-based in-

vestors all around the world between 2010 and 2021. The dataset is then supple-

mented with detailed information on each investor and organization, including their

founding dates, headquarters locations, industry sectors, number of investments,

connection reasons, investment types, investment stages, revenue estimates, and

employee numbers.

9.1.1 Investor Variables

In the dataset, investors are identified, in turn, as Investor A and Investor B. The

variable Connection Reason specifies the type of investment observed for each trans-

action. For instance, if Investor A invests prior to Investor B, the Connection Reason

is categorized as Endorsement. Conversely, if Investor A invests after Investor B,

the Connection Reason is classified as Backing . In cases where both investors in-

vest simultaneously, as in a syndicate, the Connection Reason is designated as Same

Round.
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The locations of the companies involved are represented by the variables Location A

and Location B. The variables Investor Type A and Investor Type B categorize the

investors based on the types of investments they undertake, while Investor Stage A

and Investor Stage B classify the investors according to the stages of investment. The

variables Number of Investments A and Number of Investments B reflect the total

number of investments made by Investor A and Investor B, respectively. Addition-

ally, the variables Number of Lead Investments A and Number of Lead Investments

B indicate the total number of funding rounds led by each investor. The variables

Number of Exits (IPO) A and Number of Exits (IPO) B enumerate the IPO exits

achieved by the respective investors.

9.1.2 Company Variables

In the dataset, the location of the company is referred to by the variable Headquar-

ters Location. The variable Diversity Dummy is a binary indicator representing the

presence of diversity within the company. The variable Estimated Revenue catego-

rizes the company’s revenue within specific ranges. The variable Operating Status

indicates whether the company is currently active or has ceased operations, while

the variable Company Type specifies whether the company operates as a for-profit or

non-profit entity. The variable Funding Status outlines the type of transaction the

company undergoes. The variable Acquisition Status indicates whether the company

has experienced a previous acquisition, and the variable Acquisition Type further

classifies the nature of the acquisition. Finally, the variable IPO Status categorizes

the company as private, public, or delisted. The variable Industry Groups identifies

the industries to which the company belongs. Each company is classified within one

or multiple industries under this variable. The variable Funding Type categorizes

the round of investments, ranging from Seed to Series A.
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9.1.3 K-Shell Variables

The variables ksnAt and ksnBt denote the k-shell scores of the investors at time t,

while the variables ksnAt−1 and ksnBt−1 represent the k-shell scores of the investors

at time t-1. These variables facilitate tracking changes in k-shell scores over time.

To measure and utilize this change, the variables deltaA and deltaB are computed

as the difference in k-shell scores between two subsequent periods.

9.2 Data Cleaning Process & Summary Statistics

9.2.1 Industry Groups

The initial dataset encompasses 54 industries. To streamline classification, these

industries have been grouped into six logical categories, resulting in a clearer pre-

sentation and a more balanced distribution among the groups. Typically, the original

Crunchbase classification includes multiple industries for each company. To deter-

mine the appropriate logical group for a company, the total number of industries

corresponding to each logical group was calculated for each row in the Industry

Group column. Companies were then assigned to the logical group with the ma-

jority of their industries listed. In cases where a tie occurred between two logical

groups, the company was classified into the group with the fewest entries to enhance

the dataset’s representativeness.

The largest logical group is Finance, Business Services, and Real Estate, which cov-

ers industries such as Financial Services, Lending and Investments, Real Estate,

Professional Services, Administrative Services, Sales and Marketing, Accounting,

Insurance, and Legal Services, totaling 946,476 entries. This is followed by the Con-

sumer, Retail, and Lifestyle group, which merges industries such as Commerce and

Shopping, Consumer Goods, Consumer Electronics, Food and Beverage, Clothing
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and Apparel, Home and Garden, Travel and Tourism, Transportation, Automotive,

Community, and Lifestyle, with 873,044 entries. The third largest group is Media,

Arts, and Entertainment, including industries such as Media and Entertainment,

Music and Audio, Video, Gaming, Sports, Events, Design, Content and Publishing,

and Advertising, with a total of 616,258 entries. The Software group, which unites

industries such as Software, Apps, Mobile, Platforms, and Artificial Intelligence,

has 546,004 entries. Next is the Technology group, which includes industries such

as Data and Analytics, Information Technology, Privacy and Security, Hardware,

and Internet Services, with 513,420 entries. Finally, the Healthcare, Energy, Educa-

tion, and Other group comprises a diverse set of industries, including Biotechnology,

Healthcare, Science and Engineering, Pharmaceuticals, Medical Devices, Wellness,

Energy, Manufacturing, Sustainability, Agriculture and Farming, Natural Resources,

Environmental Services, Education, Government and Military, Navigation and Map-

ping, Nonprofit, Public Safety, and Other, totaling 451,164 entries.

9.2.2 Funding Type

The distribution of the Funding Type variable shows that the majority of observa-

tions are of the Series A type, with 1,557,120 observations. This is followed by the

Seed type, with 1,456,400 observations, Series B with 1,369,530 observations, and

Angel/Pre-Seed with 155,484 observations.

9.2.3 Location Groups

The location variables Location A, Location B (referring to investors), and Head-

quarters Location (describing companies) are grouped into four main categories of

similar sizes to ensure a balanced and stable model, thereby yielding generalizable

results. Among the countries represented, all the investors and the majority of
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companies are from the United States. Consequently, the location variables are di-

vided into four primary groups: San Francisco, California (excluding San Francisco),

United States (excluding California and San Francisco), and Rest of the World.

For the Location A and Location B variables, the majority of entries belong to the

United States group, with 1,228,650 entries. This is followed by the San Francisco

group, with 1048,653 entries, and California with 600,322 entries.

The Headquarters Location variable follows the same grouping sequence. The

United States is the majority group, with 1,901,500 entries. The second-largest

group is San Francisco, with 1,594,830 entries, followed by California, with 865,796

entries, and finally the Rest of the World group, with 68,264 entries.

9.2.4 Investor Type

The variables Investor Type A and Investor Type B include multiple types of in-

vestors in a single entry. Consequently, a hierarchical order has been established, and

each entry is classified according to the highest-ranked investor type it contains. The

hierarchy, from top to bottom, is as follows: Government Office, Corporate Venture

Capital, Venture Capital, Micro VC, Angel Group, Private Equity Firm, Family

Investment Office, Accelerator, Incubator, Fund of Funds, Investment Bank, Co-

Working Space, Entrepreneurship Program, Syndicate, Hedge Fund, Pension Fund,

Secondary Purchaser, Startup Competition, and University Program. The entries,

once modified according to the logical groups, are then grouped into four logical cat-

egories: Venture Capital Firms, Institutional Entities, Startup Support Programs,

and Investment Funds. The Venture Capital group is the largest, with 2,356,600 en-

tries, including the investor types of Venture Capital and Micro VC. The group with

the second-highest number of entries is Institutional Entities, with 178,356 entries,
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which includes investor types such as Investment Bank, Pension Fund, Government

Office, Family Investment Office, Angel Group, Syndicate, and Co-Working Space.

This is followed by the Startup Support Programs group, with 134,005 entries, en-

compassing investor types like Accelerator, Incubator, Entrepreneurship Program,

University Program, and Startup Competition. Lastly, the Investment Funds group

includes investor types such as Private Equity Firm, Hedge Fund, Fund of Funds,

and Secondary Purchaser, with a total of 75,994 entries.

9.2.5 Other Variables

The dataset includes the variable Diversity Spotlight; however, this column only

contains entries for companies headquartered in the United States. Given that

many companies are composed of employees from diverse ethnic backgrounds, this

column can contain numerous entries. Consequently, the Diversity Dummy variable

has been created to represent companies with diverse employee backgrounds. This

variable takes the value of one if there is at least one ethnicity entry in the Diversity

Spotlight variable. In total, 1,306,680 companies are identified as having at least

one diverse background.

The variable Estimated Revenue has been rearranged into four categories. The group

with the most entries is the 1M to 10M range, with 2,021,400 entries, followed by

the 10M to 50M range, with 839,592 entries. The Less than 1M group has 575,010

entries, and the Above 50M group has 476,386 entries.

The variable Acquisition Status is classified into three groups based on whether

the company has undergone an acquisition. The primary classifications are Made

Acquisitions, with 878,296 entries, Was Acquired, with 803,088 entries, and Both

Made Acquisitions and Was Acquired, with 189,188 entries.
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The variable Acquisition Type is classified into five groups. The majority group is

Acquisition, with 855,148 entries, followed by Merger with 32,376 entries, Acquihire

with 26,394 entries, Leveraged Buyout with 10,172 entries, and Management Buyout

with 610 entries.

The variable IPO Status is categorized into three groups. The majority group is

Private, with 4,207,200 entries. This is followed by the Public group, with 218,608

entries, and the Delisted group, with 4,862 entries.

The means and medians of the variables Number of Investments A and Number of

Investments B are 175 and 90, respectively. The variables Number of Lead Invest-

ments A and Number of Lead Investments B have means and medians of 67 and

19, respectively. The means and medians of the variables Number of Exits (IPO) A

and Number of Exits (IPO) B are 70 and 22, respectively.

The dataset includes three dummy variables related to the locations of Investors A,

B, and the company. The variable LocationMatchAB indicates if the investors are

from the same location, LocationMatchAC indicates if Investor A and the Head-

quarters Location are the same, and LocationMatchBC indicates if Investor B and

the Headquarters Location are the same.

The variables InvestorTypeMatch and InvestorStageMatch are binary indicators

that return a value of one if the types or stages of Investor A and Investor B are

the same, and zero otherwise. The variable IPODummy is another binary variable

that returns a value of one if the company has undergone an IPO process. Similarly,

the variable MADummy returns one if the company has been involved in a merger

or acquisition (M&A) process. Finally, the variable MA/IPODummy returns one if

the company has undergone either an IPO or an M&A process.
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9.3 Parallel Trend Assumption

Table 14: Triple Difference Models Results (Non-Significant)

Effect Type Coefficient Std. Error

Main Effects
Intercept (β0) 0.0045 (0.0052)
PlaceboC (AB),t: backing (β1) -0.0123 (0.0145)
PlaceboC (AB),t: syndication (β1) -0.0089 (0.0137)
∆Ks(AB),(t−1) (β2) 0.0412 (0.0623)
IB,(t−1) (β3) 0.0291 (0.0547)

Two-Way Interactions
PlaceboC (AB),t: backing ×∆Ks(AB),(t−1) (β5) -0.0248 (0.0579)
PlaceboC (AB),t: syndication ×∆Ks(AB),(t−1) (β5) -0.0183 (0.0527)
PlaceboC (AB),t: backing × IB,(t−1) (β6) -0.0136 (0.0458)
PlaceboC (AB),t: syndication × IB,(t−1) (β6) -0.0074 (0.0432)
IB,(t−1) ×∆Ks(AB),(t−1) (β7) 0.0167 (0.0491)

Three-Way Interactions
C(AB),t: backing × IB,(t−1) ×∆Ks(AB),(t−1) (β11) 0.0053 (0.0118)
PlaceboC (AB),t: syndication × IB,(t−1) ×∆Ks(AB),(t−1) 0.0041 (0.0107)

Controls and Model Fit
Controls inv A Yes
Controls inv B Yes
Fixed Effects C Yes
Observation Number 3,803,954
R squared 12.4%
Note: No coefficients are statistically significant (p > 0.05)

A critical assumption underlying the empirical strategy in this paper is that, absent

treatment, treated and control venture capital firms would have followed similar

trends in their network centrality over time. This is known as the parallel trends as-

sumption, which ensures that any estimated effects from the triple difference (DDD)

methodology capture the causal impact of forming connections with influential ven-

ture capital firms rather than reflecting pre-existing differences in network evolution

between treated and control firms. If this assumption does not hold, the estimated

treatment effects could be biased, as firms that eventually form influential con-
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nections might have already been on a trajectory of increasing centrality prior to

treatment. This would confound the causal interpretation of the results, as any

observed post-treatment differences could merely reflect selection dynamics rather

than the influence of network formation itself. Establishing the validity of the paral-

lel trends assumption is therefore essential to ensuring that the estimated treatment

effects are not driven by unobserved heterogeneity among firms that later receive

influential backing.

To empirically assess the validity of this assumption, I conduct a placebo triple

difference test that applies the same estimation framework used in the main analy-

sis but assigns a placebo treatment window occurring six to twelve months before

the actual connection event. If firms on track to receive influential connections al-

ready exhibited systematically different network centrality trajectories prior to the

actual treatment, one would expect to observe a statistically significant effect in this

placebo specification. The results, presented in Table 14, indicate that the coefficient

on the placebo treatment is small in magnitude and statistically indistinguishable

from zero, suggesting that firms in the treated group did not exhibit significantly

different network dynamics in the months leading up to treatment compared to firms

in the control group. Furthermore, interaction terms between the placebo treatment

and prior network position also yield statistically insignificant estimates, reinforcing

the conclusion that the evolution of network centrality did not systematically dif-

fer between treated and control firms prior to the connection event. The relatively

low explanatory power of this placebo regression further suggests that the placebo

treatment does not meaningfully predict changes in k-shell position.

The findings from this analysis provide strong empirical support for the parallel

trends assumption, which is a necessary condition for the validity of the triple dif-
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ference identification strategy. By demonstrating that firms that later receive in-

fluential backing do not exhibit differential network trends prior to treatment, the

results confirm that the estimated effects in the main analysis are not driven by

selection bias or pre-existing differences between treated and control firms. This

validation strengthens the credibility of the causal interpretation, reinforcing the

conclusion that forming connections with influential investors plays a meaningful

role in shaping network centrality in venture capital markets. The importance of

establishing this assumption extends beyond the specific application in this study, as

failure to account for parallel trends can lead to erroneous conclusions in difference-

in-differences or triple difference settings. By explicitly testing for and confirming

the validity of this assumption, this study provides greater confidence in the robust-

ness of its findings and in the broader implications regarding the role of network

structure in venture capital investment dynamics.
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